Институт физики микроструктур РАН — филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук» (ИФМ РАН)

На правах рукописи

НАУЧНЫЙ ДОКЛАД

об основных результатах подготовленной научно-квалификационной работы (диссертации)

ЭФФЕКТЫ БЛИЗОСТИ В МНОГОСЛОЙНЫХ МАГНИТНЫХ СТРУКТУРАХ

по основной образовательной программе подготовки научно-педагогических кадров в аспирантуре

> направление подготовки: 03.06.01 — Физика и астрономия направленность: 1.3.8. — Физика конденсированного состояния

> > Выполнил аспирант:

Кузнецов Михаил Алексеевич

Научный руководитель: доктор физ.-мат. наук:

Фраерман Андрей Александрович

дата: ____ июня 2024 г.

Нижний Новгород – 2024

Под эффектами близости в широком смысле понимают всевозможные эффекты, возникающие в окрестности контакта различных материалов [1]. По-видимому, самым известным примером является возникновение сверхпроводящих свойств в несверхпроводящих металлах, помещенных в электрический контакт со сверхпроводником [2]. Этот эффект связан с проникновением сверхпроводящего параметра порядка (куперовских пар) в нормальный металл на глубину, сравнимую с длиной когерентности нормального металла. При этом в окрестности границы раздела со стороны сверхпроводника происходит подавление сверхпроводящего порядка. Аналогичная ситуация реализуется вблизи контакта магнитоупорядоченного (например, ферро- или антиферромагнетика) и слабомагнитного (например, парамагнетика¹) веществ: вблизи границы со стороны магнитоупорядоченного вещества магнитный порядок подавляется, а со стороны слабомагнитного — индуцируется [3, 4]. В этом случае говорят, соответственно, о магнитном эффекте близости. Сюда можно отнести также явления, возникающие на границе раздела двух магнитоупорядоченных веществ, например ферро- и антиферромагнетика.

Обычно магнитный эффект близости возникает благодаря наличию обменного взаимодействия на границе раздела. В этом случае граница должна быть как можно более резкой и как можно менее шероховатой для обеспечения большой обменной связи материалов. С другой стороны, магнитный эффект близости может быть вызван, например, диполь-дипольным (магнитостатическим) взаимодействием. Так, доменные структуры двух ферромагнитных слоев перестраиваются при их магнитостатическом взаимодействии, опосредованном полями рассеяния [5]. В этом случае требования к границе раздела могут быть смягчены. В частности, эффект близости сохранится, даже если материалы разделены диэлектрической прослойкой².

Исследованию магнитных эффектов близости, а также связанных с ними эффектов, посвящена настоящая диссертация.

¹Далее под парамагнетиком будет также пониматься ферромагнетик, поддерживаемый при температуре, превышающей критическую

²Отметим, что толщина прослойки должна быть, с одной стороны, меньше характерного масштаба неоднородностей распределения намагниченности (толщины доменной стенки). С другой стороны, толщина прослойки должна быть достаточно большой для подавления обменного взаимодействия

Актуальность темы.

Магнитные эффекты близости (например, намагничивание парамагнетика) могут приводить к другим, связанным эффектам. В частности, если намагничивание происходит в адиабатических условиях, то оно будет сопровождаться нагревом. Наоборот, при адиабатическом размагничивании парамагнетика происходит его охлаждение. Это явление было открыто более ста лет назад [6] и называется магнитокалорическим эффектом (МКЭ). Интерес к МКЭ во многом связан с возможностью создания «магнитного» холодильника, в котором роль рабочего тела будет выполнять магнитный материал с сильным МКЭ, намагничиваемый внешним магнитным полем. Подобные устройства имеют ряд преимуществ по сравнению с холодильниками, работающими на основе процессов испарения и конденсации рабочего вещества, среди которых выделяют экологичность и энергоэффективность [7,8].

Несмотря на успехи в создании магнитокалорических материалов, проблема магнитного охлаждения при комнатной температуре остается нерешенной. Принципиальная сложность для однородных материалов заключается в необходимости приложения большого $(10-100 \text{ k}\Theta)$ магнитного поля для достижения заметного (~ 1 K) изменения температуры [9]. Для создания таких больших полей требуются значительные затраты энергии (если используются электромагниты) или громоздкие постоянные магниты [10], которые нежелательно использовать в магнитном охлаждении. Переход от однородных материалов к наноструктурированным [11,12] может помочь существенно уменьшить величину прикладываемого поля при полном или частичном сохранении величины МКЭ, поэтому представляется интересным изучение МКЭ в наноструктурах. Действительно, если парамагнитный слой имеет толщину, сравнимую с его обменной длиной (≤ 10 нм), то при обменном взаимодействии с ферромагнетиками, например, в трехслойной структуре ферромагнетик/парамагнетик/ферромагнетик, парамагнитный слой может быть намагничен по всему объему, когда намагниченности ферромагнетиков параллельны. Поскольку величина обменного поля может достигать огромных значений (~ 10⁷ Э) [13], то эта намагниченность может быть значительной. При антипараллельной ориентации намагниченностей ферромагнитных слоев намагниченность прослойки должна быть существенно меньше. Осуществляя переключение между параллельной и антипараллельной ориентацией посредством приложения небольшого (~ 100 Э) внешнего магнитного поля³, можно добиться значительного МКЭ. Таким образом, исследование МКЭ в наноструктуре ферромагнетик/парамагнетик/ферромагнетик, а также в схожей структуре ферромагнетик/антиферромагнетик/ферромагнетик, является актуальной задачей для применения в технологии тонкопленочного охлаждения [14, 15].

С другой стороны, обратное влияние парамагнетика на ферромагнетик также может приводить к интересным эффектам. В случае, когда обменное взаимодействие между слоями подавлено, парамагнетик может быть намагничен полями рассеяния, создаваемыми ферромагнитной пленкой. Но намагниченный парамагнетик и сам является источником полей рассеяния, которые влияют на исходное распределение намагниченности в ферромагнетике. Такое магнитостатическое взаимодействие приводит к нарушению киральной симметрии в системе. Это проявляется, в частности, в разности энергий левой и правой магнитных циклоид [16]. Нарушение киральной симметрии делает магнитостатическое взаимодействие похожим на взаимодействие Дзялошинского-Мории (ДМ), которое существует в системах без центра инверсии [17,18]. Такая ситуация реализуется, например, в кристаллах MnSi [19] и в искусственных многослойных структурах ферромагнетик/тяжелый металл [20]. Микроскопическим механизмом, ответственным за возникновение взаимодействия ДМ, которое еще называют «антисимметричным» обменом, является спин-орбитальная связь. Так, наличие спин-орбитального взаимодействия в газе электронов проводимости приводит к особенностям его магнитной восприимчивости и возникновению неколлинеарного магнитного состояния двух магнитных ионов, помещенных в такой газ [21,22]. Взаимодействие ДМ приводит к невзаимности спиновых волн [23] и формированию экзотических магнитных состояний: магнитных циклоид и скирмионов [24]. Свойство невзаимности спиновых волн может быть использовано для создания магнонных логических устройств, таких как диод и циркулятор [25, 26]. С другой стороны, магнитные скирмионы являются многообещающими кандидатами для создания новых устройств для хранения и обработки информации [27], а также вызывают значительный интерес для нейроморфных вычислений [28].

Ожидается, что в структуре ферромагнетик/парамагнетик, а также в схожей с ней структуре ферромагнетик/сверхпроводник, в которой источником вторичных полей рассеяния является сверхток в сверхпроводнике, должны иметь место описанные выше эффекты.

³Предполагается, что один из ферромагнитных слоев имеет большее поле переключения, например, из-за эффекта обменного смещения, вызванного взаимодействием с антиферромагнетиком

Ключевым отличием этих структур от системы со взаимодействием ДМ является сильная температурная чувствительность магнитостатической связи в окрестности критических температур парамагнетика и сверхпроводника, что позволяет настраивать величину взаимодействия. Эта особенность может оказаться полезной для приложений.

Цели и задачи.

Целями настоящей диссертации являются

- 1. Теоретическое магнитокалорических исследование свойств планарных ферромагнетик/парамагнетик/ферромагнетик структур И ферромагнетик/антиферромагнетик/ферромагнетик, в которых в качестве магнитокалорического материала (рефрижеранта) выступают парамагнитная и антиферромагнитная прослойки, а ферромагнитные слои создают обменные поля на границах раздела за счет эффекта магнитной близости. Обменные поля приводят к наведению ферромагнитного порядка в парамагнетике и подавлению антиферромагнитного — в антиферромагнетике. Переориентация обменных полей за счет приложения внешнего магнитного поля приводит к изменению магнитной энтропии прослойки, т.е. к МКЭ.
- 2. Теоретическое исследование статических и динамических свойств планарных структур ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник, в которых эффект близости обусловлен диполь-дипольным взаимодействием ферромагнетика и парамагнетика (сверхпроводника): неоднородное распределение намагниченности ферромагнетика за счет полей рассения индуцирует намагниченность в парамагнетике или сверхток в сверхпроводнике, которые являются источниками вторичных полей рассеяния, влияющих на исходное распределение намагниченности.

Для достижения поставленных целей решались следующие задачи:

 Рассчет изотермического изменения магнитной энтропии структуры ферромагнетик/парамагнетик/ферромагнетик при изменении взаимной ориентации намагниченностей ферромагнитных слоев с параллельной до антипараллельной. Оценка величины магнитного поля, которое необходимо приложить к системе для осуществления такого переключения.

- 2. Рассчет изотермического изменения магнитной энтропии структуры ферромагнетик/антиферромагнетик/ферромагнетик при изменении направления намагниченностей ферромагнитных слоев с перпендикулярного до параллельного относительно легкой оси антиферромагнитной прослойки. Оценка величины магнитного поля, которое необходимо приложить к системе для осуществления такого переключения.
- 3. Вычисление эффективной постоянной ДМ в структурах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник. Рассчет спектра спиновых волн, распространяющихся в тонкой ферромагнитной пленке, а также рассчет энергий киральных магнитных текстур (скирмиона, магнитной циклоиды). Определение условий, при которых такие текстуры имеют меньшую энергию, чем у однородно намагниченной ферромагнитной пленки (условия устойчивости).

Научная новизна.

- Построена феноменологическая теория, позволяющая рассчитывать МКЭ (изотермическое изменение магнитной энтропии) в структуре ферромагнетик/парамагнетик/ферромагнетик. Получено аналитическое выражение для изотермического изменения магнитной энтропии, вызванного изменением взаимной ориентации намагниченностей ферромагнитных слоев с параллельной до антипараллельной.
- 2. Предложен способ обменного усиления магнитокалорического эффекта, ocантиферромагнитного порядка прослойки нованного на подавлении обменными полями со стороны ферромагнитных слоев в структуре ферромагнетик/антиферромагнетик/ферромагнетик. Построена феноменологическая теория, позволяющая рассчитывать МКЭ (изотермическое изменение магнитной энтропии) в такой структуре. Получено аналитическое выражение для изотермического изменения магнитной энтропии, вызванного изменением направления намагниченностей ферромагнитных слоев с перпендикулярного до параллельного относительно легкой оси антиферромагнетика.
- 3. Получены аналитические выражения для эффективной постоянной ДМ, а также спектров спиновых волн в структурах ферромагнетик/парамагнетик и ферромагне-

6

тик/сверхпроводник. Показано, что энергия ферромагнитной пленки с киральными магнитными текстурами (скирмионом и магнитной циклоидой) может быть меньше энергии однородно намагниченной пленки только в случае системы ферромагнетик/парамагнетик.

Теоретическая и практическая значимость.

Построенные феноменологические теории, МКЭ позволяют рассчитывать ферромагнетик/парамагнетик/ферромагнетик структурах И ферромагнев тик/антиферромагнетик/ферромагнетик по известным из литературы наборам феноменологических параметров. Так, для структур Fe/Gd/Fe и ферромагнетик/MnF₂/ферромагнетик изотермическое изменение магнитной энтропии может достигать $1 \cdot 10^5$ эрг K^{-1} см⁻³ и $5 \cdot 10^5$ эрг K⁻¹ см⁻³ соответственно. Величина магнитного поля, которое необходимо приложить для достижения такого эффекта, не превышает 0.35 кЭ и 10 кЭ. Полученные величины сравнимы с МКЭ в эталонном магнитокалорическом материале Gd в поле 10 кЭ $(\approx 2.4 \cdot 10^5 \text{ эрг K}^{-1} \text{ см}^{-3}$ [29]). Продемонстрировано обменное усиление МКЭ в рассматриваемых структурах. Так, МКЭ в отдельных пленках Gd и MnF₂ при тех же величинах внешнего поля составляет $2.3 \cdot 10^4$ эрг K⁻¹ см⁻³ и $0.85 \cdot 10^4$ эрг K⁻¹ см⁻³, что соответствует обменному усилению в 4 и в 60 раз. Продемонстрировано выполнение соотношения Максвелла для рассматриваемых структур, связывающее энтропию и магнитный момент, что позволяет проводить косвенные измерения изотермического изменения энтропии по магнитометрическим данным. Таким образом, полученные результаты можно рассматривать как рекомендацию для проведения экспериментов по измерению МКЭ в рассматриваемых структурах.

Эффективное взаимодействие ДМ, возникающее в системах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник, имеет интересную особенность сильную температурную чувствительность в окрестности критических точек фазовых переходов второго рода парамагнетика и сверхпроводника. Эта особенность позволяет управлять величиной невзаимности спиновых волн в широком диапазоне частот, что может быть использовано для создания управляемых устройств магнонной логики. Так, величина частотного сдвига в структурах Ni₈₀Fe₂₀/Gd и Ni₈₀Fe₂₀/Pb при изменении температуры на 5 К может достигать 8 ГГц и 0.2 ГГц соответственно. Предсказанная возможность

7

стабилизации киральных магнитных текстур позволяет говорить о структуре ферромагнетик/парамагнетик как о возможной платформе для создания скирмионов, являющейся альтернативной по отношению к структуре ферромагнетик/тяжелый металл. Температурная чувствительность эффективной постоянной ДМ позволяет управлять размерами скирмионов, дает возможность их создания и удаления, что может найти широкое применение в устройствах магнитной памяти. Полученные результаты допускают возможность экспериментальной проверки. Так, эффективную постоянную ДМ можно измерить при помощи мандельштам-бриллюэновской спектроскопии; формирующиеся киральные магнитные состояния можно наблюдать методами магнитно-силовой и лоренцевой микроскопии.

Методология и методы исследования.

Для решения первых двух поставленных задач была использована теория Ландау о фазовых переходах второго рода, в рамках которой свободная энергия представляется в виде разложения по степеням параметров порядка. Посредством минимизации свободной энергии определены параметры порядка, а также их связь с магнитной энтропией рассматриваемых систем. Для решения третьей поставленной задачи использовались уравнения Максвелла и уравнение Лондонов для нахождения магнитостатической энергии систем ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник. Для определения спектра спиновых волн решалось уравнение Ландау-Лифшица, а для определения энергий киральных магнитных текстур применялся метод пробных функций.

Основные положения, выносимые на защиту.

- В многослойной структуре ферромагнетик/парамагнетик достигается обменное усиление магнитокалорического эффекта, обусловленное наведением ферромагнитного порядка в парамагнетике. Наибольшее изотермическое изменение магнитной энтропии обеспечивается изменением взаимной ориентации намагниченностей ферромагнитных слоев с параллельной до антипараллельной.
- 2. В многослойной структуре ферромагнетик/антиферромагнетик достигается обменное усиление магнитокалорического эффекта, обусловленное подавлением антиферромагнитного порядка в антиферромагнетике. Наибольшее изотермическое изменение магнитной энтропии обеспечивается изменением направления намагниченностей ферро-

магнитных слоев с перпендикулярного до параллельного относительно легкой оси анизотропии антиферромагнетика. В рассматриваемой неоднородной структуре выполняется соотношение Максвелла, при помощи которого можно проводить косвенные измерения изотермического изменения магнитной энтропии по магнитометрическим данным.

3. Магнитостатическое взаимодействие приводит к появлению невзаимного слагаемого в спектре спиновых волн, распространяющихся в структурах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник, а также стабилизирует киральные магнитные текстуры (магнитная циклоида, скирмион) в структуре ферромагнетик/парамагнетик. Особенностью рассматриваемого взаимодействия является сильная температурная зависимость в окрестности критических температур парамагнетика и сверхпроводника, что, в частности, позволяет выделить связанные с этим взаимодействием эффекты в эксперименте.

Личный вклад автора

- Расчеты изотермического изменения магнитной энтропии в многослойной структуре ферромагнетик/парамагнетик в рамках теории Ландау о фазовых переходах второго рода выполнено автором лично [A1, A2].
- 2. Исследование магнитокалорического эффекта в многослойной структуре ферромагнетик/антиферромагнетик в рамках теории Ландау о фазовых переходах второго рода выполнено автором совместно с Е. А. Караштиным [А6].
- 3. Расчет спектра спиновых волн в структурах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник выполнен автором лично [A3, A5].
- Расчет эффективной постоянной Дзялошинского-Мории, а также определение условий устойчивости киральных магнитных текстур (скирмиона, магнитной циклоиды) выполнены автором совместно с К. Р. Мухаматчиным [А4, А5].

Степень достоверности и апробация результатов.

Результаты работы опубликованы в отечественных и зарубежных журналах: Журнал Экспериментальной и Teoperuчeckoй Физики [A2,A5]; Journal of Applied Physics [A1]; Physical Review B [A3, A4, A6].

Также результаты докладывались на следующих международных конференциях: XXIV-XXVIII международные симпозиумы «Нанофизика и наноэлектроника» (Н.Новгород, 2020-2024) [B1, B2, B5, B6, B8]; Международная конференция «Новое в магнетизме и магнитных материалах» (Москва, 2021) [B3]; VIII Euro-Asian Symposium «Trends in MAGnetism» (Russia, Kazan, 2022) [B4]; Дни калорики в Дагестане: функциональные материалы и их приложения (Дербент, 2023) [B7].

Кроме того, по результатам диссертации были проведены семинары в следующих организациях: Институт физики микроструктур РАН; Институт теоретической физики им. Л. Д. Ландау.

Публикации

Результаты диссертации изложены в 14 печатных работах, в том числе в 6 статьях в реферируемых журналах, входящих в список ВАК [A1–A6], и в 8 работах в сборниках трудов международных конференций [B1–B8].

Объем и структура диссертации

Диссертация состоит из Введения, трех Глав, трех Приложений и Заключения. Общий объем диссертации составляет 111 страниц, включая 25 рисунков. Список цитируемой литературы содержит 133 наименования, список публикаций автора по теме диссертации включает 14 наименований.

Содержание работы

Во Введении обоснована актуальность темы работы, описана степень ее разработанности, сформулированы основные цели и задачи, аргументирована научная новизна исследований, а также теоретическая и практическая значимость полученных результатов; описана методология и методы исследования, указан личный вклад автора в работу, сформулированы основные положения, выносимые на защиту.

В первой Главе Раздел 1.1 посвящен литературному обзору. Приведено описание используемых теоретических подходов: теории Ландау о фазовых переходах второго рода (Раздел 1.1.1), теории молекулярного поля Вейсса (Раздел 1.1.2); изложен принцип магнитного охлаждения и основы МКЭ (Раздел 1.1.3). В Разделе 1.2 изложены оригинальные результаты первой Главы настоящей диссертации: исследование МКЭ в планарной структуре ферромагнетик/парамагнетик/ферромагнетик (рис. 1). В такой структуре парамагнитная прослойка выступает в качестве твердотельного рефрижеранта, а ферромагнитные слои являются источниками обменных полей, меняющих магнитную энтропию прослойки при изменении взаимной ориентации их намагниченностей с параллельной (рис. 1 а) до антипараллельной (рис. 1 b). Магнитокалорический эффект в такой системе тем больше, чем сильнее обменная связь на границе между ферромагнетиком и парамагнетиком. В Разделе 1.2.1 вычисляется индуцированная намагниченность в полубесконечном парамагнетике, граничащем с ферромагнетиком. Показано, что если постоянная межслоевого обменного взаимодействия l_J много больше некоторой характерной величины, т.е. $l_J \gg l_0 (\beta/2)^{1/2}$, то намагниченность парамагнетика достигает насыщения на границе раздела. Здесь l_0 — обменная длина в парамагнетике, β — один из феноменологических параметров теории Ландау. Это условие выполняется в структуре Fe/Gd, где в качестве рефрижеранта выступает эталонный магнитокалорический материал — Gd. В Разделе 1.2.2 показано, что в трехслойной структуре изотермическое изменение магнитной энтропии Δs , вызванное изменением взаимной ориентации намагниченностей ферромагнитных слоев с параллельной (^^) до антипараллельной $(\uparrow\downarrow)$, пропорционально среднему по толщине квадрату намагниченности прослойки **m**, т.е.

$$\Delta s = s_{\uparrow\downarrow} - s_{\uparrow\uparrow} \propto \overline{\mathbf{m}^2}_{\uparrow\uparrow} - \overline{\mathbf{m}^2}_{\uparrow\downarrow}, \ \overline{\mathbf{m}^2}_{\uparrow\uparrow(\uparrow\downarrow)} = \frac{1}{d} \int_{-d/2}^{d/2} \mathbf{m}^2_{\uparrow\uparrow(\uparrow\downarrow)}(z) \, dz,$$

где d — толщина прослойки, z — координата, изменяющаяся вдоль нормали к системе. На рис. 2 изображены зависимости Δs при различных толщинах парамагнитной прослойки d в структуре Fe/Gd/Fe. Как можно видеть, величина МКЭ может достигать больших значений: $\Delta s \approx 1 \cdot 10^5$ эрг K⁻¹ см⁻³, что сравнимо с МКЭ в объемном Gd в поле 10 кЭ ($\approx 2.4 \cdot 10^5$ эрг K⁻¹ см⁻³ [29]). При этом величина магнитного поля, которое необходимо приложить к рассматриваемой системе для достижения такого эффекта, составляет 0.35 кЭ,

Рисунок 1 Схематическое изображение планарной структуры ферромагнетик/парамагнетик/ферромагнетик для случаев (а) параллельной и (b) антипараллельной ориентаций намагниченностей ферромагнитных слоев. Здесь *I* ферромагнитный слой, *II* — парамагнитный слой, **M**_f — намагниченность свободного ферромагнитного слоя, **M**_p — намагниченность закрепленного ферромагнитного слоя, **H** внешнее магнитное поле. Сплошными линиями показаны профили намагниченности прослойки *m*_{↑↑}(*z*) и *m*_{↑↓}(*z*)

что почти в 30 раз меньше. Оценка адиабатического изменения температуры ΔT в структуре Fe/Gd(3 нм)/Fe составляет 0.5 K (в объемном Gd — 3.3 K [29]). Эффект магнитной близости приводит к 4-кратному обменному усилению МКЭ. Действительно, изотермическое изменение энтропии отдельной пленки Gd в поле 0.35 кЭ составляет 2.3 · 10⁴ эрг K⁻¹ см⁻³, что примерно в 4 раза меньше, чем в структуре Fe/Gd(3 нм)/Fe.

Во второй Главе Раздел 2.1 посвящен литературному обзору. Описано применение теории Ландау о фазовых переходах второго рода для антиферромагнетиков (Раздел 2.1.1). В Разделе 2.2 изложены оригинальные результаты диссертации: исследование МКЭ в планарной структуре ферромагнетик/антиферромагнетик/ферромагнетик (рис. 3). Теперь в качестве рефрижеранта выступает прослойка антиферромагнетика, антиферромагнитный порядок (вектор Нееля) которой подавляется обменными полями со стороны ферромагнитных

Рисунок 2 Температурные зависимости изотермического изменения магнитной энтропии Δs при различных толщинах парамагнитной прослойки d в структуре Fe/Gd/Fe

слоев. Степень подавления антиферромагнитного порядка и, как следствие, магнитная энтропия прослойки различны для случаев перпендикулярного (рис. 3 а) и параллельного (рис. 3 b) направлений намагниченностей ферромагнетиков относительно легкой оси прослойки. В Разделе 2.2.1 рассчитывается профиль вектора Нееля в полубесконечном антиферромагнетике, граничащем с ферромагнетиком; определяются условия, при выполнении которых происходит значительное подавление антиферромагнитного порядка на границе раздела. Показано, что в отличие от случая, рассмотренного в предыдущей главе, МКЭ достижим даже в двухслойной структуре. Изотермическое изменение магнитной энтропии достигает максимума при $J_{\parallel} \ll J \ll J_{\perp}$, где J — постоянная межслоевого обмена, а $J_{\perp(\parallel)}$ — характерные значения J, определяемые материальными параметрами структуры ($J_{\parallel} \ll J_{\perp}$). В Разделе 2.2.2 показано, что в трехслойной структуре изотермическое изменение магнитной энтропии ной энтропии, вызванное изменение направления намагниченностей ферромагнитных слоев с перпендикулярного (\perp) до параллельного (\parallel) относительно легкой оси прослойки, пропорционально среднему по толщине квадрату вектора Нееля L, т.е.

$$\Delta s = s_{\parallel} - s_{\perp} \propto \overline{\mathbf{L}^2}_{\perp} - \overline{\mathbf{L}^2}_{\parallel}, \ \overline{\mathbf{L}^2}_{\perp(\parallel)} = \frac{1}{d} \int_{-d/2}^{d/2} \mathbf{L}^2_{\perp(\parallel)}(z) \, dz$$

При этом величина поля, которое необходимо приложить к системе для переориентации намагниченностей ферромагнетиков, не превышает 10 кЭ. На рис. 4 изображено изотермическое изменение энтропии $\Delta s = s_{\parallel} - s_{\perp}$ в структуре ферромагнетик/MnF₂/ферромагнетик

Рисунок 3 Схематическое изображение планарной структуры ферромагнетик/антиферромагнетик/ферромагнетик при (а) перпендикулярном и (b) параллельном направлении намагниченностей ферромагнитных слоев **M** относительно легкой оси антиферромагнетика. Здесь *I* — ферромагнитный слой,

II-антиферромагнитный слой,
Н-внешнее магнитное поле. Сплошными линиями показаны профили параметра порядк
аL(z)

в зависимости от температуры T и величины межслоевого обмена J при различных толщинах прослойки d. Как можно видеть, Δs может достигать $5 \cdot 10^5$ эрг K⁻¹ см⁻³ в поле до 10 кЭ, что сравнимо с МКЭ в объемном Gd ($\approx 2.4 \cdot 10^5$ эрг K⁻¹ см⁻³ [29]) при том же поле. Эффект магнитной близости приводит к 60-кратному обменному усилению МКЭ. Действительно, изотермическое изменение энтропии отдельной пленки MnF₂ в поле 10 кЭ составляет $0.85 \cdot 10^4$ эрг K⁻¹ см⁻³, что примерно в 60 раза меньше, чем в структуре ферромагнетик/MnF₂/ферромагнетик. Продемонстрировано выполнение соотношения Максвелла, позволяющее определять МКЭ в рассматриваемой неоднородной структуре по магнитометрическим измерениям.

В третьей Главе Раздел 3.1 посвящен литературному обзору. Приводится описание явления невзаимности спиновых волн (Раздел 3.1.1). В Разделе 3.2 изложены оригинальные ре-

Рисунок 4 Зависимости изотермического изменения энтропии Δs от температуры T и постоянной межслоевого обмена J при (a) d = 3 нм, (b) d = 7 нм, (c) d = 15 нм и (d) d = 20 нм в структуре ферромагнетик/MnF₂/ферромагнетик

зультаты диссертации: исследование магнитостатического механизма нарушения киральной симметрии в структурах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник. В этих системах неоднородное распределение намагниченности в ферромагнитной пленке посредством полей рассеяния индуцирует намагниченность или сверхток в парамагнетике или сверхпроводнике, которые являются источниками вторичных полей рассеяния, влияющих на исходное распределение намагниченности. Такое магнитостатическое взаимодействие приводит к нарушению киральной симметрии, подобно поверхностному взаимодействию ДМ в структуре ферромагнетик/тяжелый металл. В Разделе 3.2.1 рассчитана эффективная постоянная ДМ $D_{\rm eff}$ в рассматриваемых системах:

$$D_{\text{eff}}(q) = -\frac{\pi\kappa(q)}{q^2h} \left(1 - e^{-qh}\right)^2,$$

где h — толщина ферромагнитной пленки, q — волновое число. Параметр κ чувствителен к изменению температуры системы T в окрестности критической температуры T_c парамагнетика и сверхпроводника и лежит в интервале [0, 1] (ферромагнетик/парамагнетик) или [-1, 0] (ферромагнетик/сверхпроводник). Знак κ и, следовательно, знак D_{eff} , различен для случаев парамагнетика и сверхпроводника. При $qh \ll 1$ и $\pi h \sim 10$ нм будет $D_{\text{eff}} \sim 10$ нм, что сравнимо с постоянной ДМ в системе ферромагнетик/тяжелый металл [23]. В разделе 3.2.2 рассчитан спектр спиновых волн, распространяющихся системах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник. Показано, что спектр обладает свойством невзаимности, т.е. содержит слагаемое вида

$$\omega(\mathbf{q}) = \dots + 2\gamma_g D_{\text{eff}}(q) \left(\mathbf{q} \cdot (\mathbf{n} \times \mathbf{M}_0)\right) + \dots$$

где q — волновой вектор, n — нормаль к границе раздела, направленная в сторону ферромагнитной пленки, $\gamma_g > 0$ — гиромагнитное отношение, и \mathbf{M}_0 — невозмущенная однородная намагниченность пленки. Поскольку это слагаемое пропорционально эффективной постоянной ДМ, то его знак различен для случаев парамагнетика и сверхпроводника. На рис. 5 изображены зависимости действительной (ω') и мнимой (ω'') частей спектра спиновых волн от волнового числа q в структурах Ni₈₀Fe₂₀/парамагнетик и Ni₈₀Fe₂₀/сверхпроводник (векторы **n** и \mathbf{M}_0 направлены вдоль осей z и x соответственно). Невзаимность спектра отсутствует при $\kappa = 0$ и достигает максимального значения при $\kappa = 1$ (рис. 5 a, b) и $\kappa = -1$ (рис. 5 c, d). В Разделе 3.2.3 определены условия формирования киральных магнитных текстур (скирмиона, магнитной циклоиды) в рассматриваемых системах. Показано, что такие текстуры могут стабилизироваться только в структуре ферромагнетик/парамагнетик. Так, магнитная циклоида может быть стабилизирована при $\kappa > 1/2$ и $\kappa > \kappa_c^{\text{MSp}}$, где $\kappa_c^{\text{MSp}} \approx \epsilon \sqrt{K_a - 4\pi}/(2\sqrt{2}\pi)$, где $K_a > 4\pi$ — постоянная магнитной анизотропии типа легкая ось (направлена вдоль нормали к границе раздела), а є представляет собой отношение обменной длины ферромагнитной пленки к ее толщине. При
 $\kappa > \kappa_c^{\rm MSk},$ где $\kappa_c^{\rm MSk} \approx 0,06\,\epsilon\sqrt{K_a-4\pi}$ образование магнитных скирмионов энергетически выгодно.

Рисунок 5 Дисперсионные кривые (a, c) $\omega'(\mathbf{q})$ и (b, d) $\omega''(\mathbf{q})$ для структур (a, b) Ni₈₀Fe₂₀/парамагнетик и (c, d) Ni₈₀Fe₂₀/сверхпроводник. Синие линии соответствуют $\kappa = 0$, оранжевые — $|\kappa| = 1$

В Заключении сформулированы основные результаты работы.

В Приложении А приводится вычисление намагниченности, индуцированной в антиферромагнетике за счет близости с соседними ферромагнитными слоями; а также рассчитывается обменная энергия.

В Приложении В приведены вычисления магнитостатической энергии в структурах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник.

В Приложении С рассмотрен случай произвольной магнитной спирали в структурах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник; определены условия устойчивости магнитной циклоиды.

Основные результаты работы заключаются в следующем.

1. Построена феноменологическая теория, позволяющая рассчитывать МКЭ (изотермическое изменение магнитной энтропии) в структуре ферромагнетик/парамагнетик/ферромагнетик. Продемонстрировано 4-кратное обменное усиление МКЭ в структуре Fe/Gd/Fe по сравнению с отдельной пленкой Gd.

- 2. Предложен способ обменного усиления магнитокалорического эффекта в структуре ферромагнетик/антиферромагнетик/ферромагнетик. Построена феноменологическая теория, позволяющая рассчитывать МКЭ (изотермическое изменение магнитной энтропии) в такой структуре. Продемонстрировано 60-кратное обменное усиление МКЭ в структуре ферромагнетик/MnF₂/ферромагнетик по сравнению с отдельной пленкой MnF₂, а также выполнение соотношения Максвелла, позволяющее проводить косвенные измерения МКЭ по магнитометрическим данным.
- 3. Получены аналитические выражения для эффективной постоянной ДМ, а также спектров спиновых волн в структурах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник. Показано, что энергия ферромагнитной пленки с киральными магнитными текстурами (скирмионом и магнитной циклоидой) может быть меньше энергии однородно намагниченной пленки только в случае системы ферромагнетик/парамагнетик. Сильная температурная чувствительность рассматриваемого взаимодействия в окрестности критических точек фазовых переходов второго рода парамагнетика и сверхпроводника может быть использована для выделения описываемых эффеков в эксперименте, а также для создания управляемых устройств магнонной логики.

Литература

- [1] Žutić, I. Proximitized materials [Text] / I. Žutić, A. Matos-Abiague, B. Scharf [et al.] // Mater. Today. — 2019. — Vol. 22. — P. 85–107.
- [2] Шмидт, В. В. Введение в физику сверхпроводников [Текст] / В. В. Шмидт. Москва : МЦНМО, 2000.
- [3] Manna, P. K. Two interface effects: Exchange bias and magnetic proximity [Text] /
 P. K. Manna, S. M. Yusuf // Phys. Rep. 2014. Vol. 535. P. 61–99.
- [4] Hellman, F. Interface-induced phenomena in magnetism [Text] / F. Hellman, A. Hoffmann,
 Y. Tserkovnyak [et al.] // Rev. Mod. Phys. 2017. Vol. 89. P. 025006.
- [5] Feldtkeller, E. Coupled Walls in Multilayer Films [Text] / E. Feldtkeller // J. Appl. Phys. 1968. — Vol. 39. — P. 1181–1190.
- [6] Weiss, P. Le phénomène magnétocalorique [Text] / P. Weiss, A. Piccard // J. Phys. Theor. Appl. — 1917. — Vol. 7. — P. 103–109.
- [7] Franco, V. Magnetocaloric effect: From materials research to refrigeration devices [Text] /
 V. Franco, J.S. Blázquez, J.J. Ipus [et al.] // Prog. Mater. Sci. 2018. Vol. 93. —
 P. 112–232.
- [8] Ram, N. Raghu. Review on Magnetocaloric Effect and Materials [Text] / N. Raghu Ram,
 M. Prakash, U. Naresh [et al.] // J. Supercond. Novel Magn. 2018. Vol. 31. —
 P. 1971–1979.
- [9] Tishin, A. M. The Magnetocaloric Effect and its Applications [Text] / A. M. Tishin,
 Y. I. Spichkin. Boca Raton, FL, USA : CRC Press, 2016.

- [10] Bjørk, R. Review and comparison of magnet designs for magnetic refrigeration [Text] / R. Bjørk, C. R. H. Bahl, A. Smith, N. Pryds // Int. J. Refrig. 2010. Vol. 33. P. 437–448.
- [11] Miller, C. W. Magnetocaloric effect in nanoscale thin films and heterostructures [Text] /
 C. W. Miller, D. D. Belyea, B. J. Kirby // J. Vac. Sci. Technol. A. 2014. Vol. 32.
- [12] Doblas, D. Nanostructuring as a procedure to control the field dependence of the magnetocaloric effect [Text] / D. Doblas, L. M. Moreno-Ramírez, V. Franco [et al.] // Mater. Des. — 2017. — Vol. 114. — P. 214–219.
- [13] Вонсовский, С. В. Магнетизм [Текст] / С. В. Вонсовский. Москва : Наука, 1971.
- [14] Silva, D. J. Solid state magnetic refrigerator [Text] / D. J. Silva, B. D. Bordalo, A. M. Pereira [et al.] // Appl. Energy. — 2012. — Vol. 93. — P. 570–574.
- [15] Pashenkin, I. Y. Magnetic and Magnetocaloric Modifications near Room Temperature in Fe_{0.6}Al_{0.4} Nanoalloys under Irradiation by Swift Heavy Ions [Text] / I. Y. Pashenkin, R. V. Gorev, M. A. Kuznetsov [et al.] // J. Phys. Chem. C. 2024. Vol. 128. P. 8853–8860.
- [16] Mikuszeit, N. Magnetostatics and the rotational sense of cycloidal spin spirals [Text] / N. Mikuszeit, S. Meckler, R. Wiesendanger, R. Miranda // Phys. Rev. B. — 2011. — Vol. 84. — P. 054404.
- [17] Дзялошинский, И. Е. Термодинамическая теория «слабого» ферромагнетизма антиферромагнетиков [Текст] / И. Е. Дзялошинский // ЖЭТФ. — 1957. — Т. 32. — С. 1547–1562.
- [18] Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism [Text] /
 T. Moriya // Phys. Rev. 1960. Vol. 120. P. 91–98.
- [19] Ishikawa, Y. Helical spin structure in manganese silicide MnSi [Text] / Y. Ishikawa, K. Tajima,
 D. Bloch, M. Roth // Solid State Commun. 1976. Vol. 19. P. 525–528.
- [20] Crépieux, A. Dzyaloshinsky–Moriya interactions induced by symmetry breaking at a surface
 [Text] / A. Crépieux, C. Lacroix // J. Magn. Magn. Mater. 1998. Vol. 182. —
 P. 341–349.

- [21] Imamura, H. Twisted exchange interaction between localized spins embedded in a one- or two-dimensional electron gas with Rashba spin-orbit coupling [Text] / H. Imamura, P. Bruno, Y. Utsumi // Phys. Rev. B. — 2004. — Vol. 69. — P. 121303.
- [22] Wang, S.-X. RKKY interaction in three-dimensional electron gases with linear spin-orbit coupling [Text] / S.-X. Wang, H.-R. Chang, J. Zhou // Phys. Rev. B. — 2017. — Vol. 96. — P. 115204.
- [23] Di, K. Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film [Text] / K. Di, V. L. Zhang, H. S. Lim [et al.] // Appl. Phys. Lett. — 2015. — Vol. 106.
- [24] Romming, N. Writing and Deleting Single Magnetic Skyrmions [Text] / N. Romming, C. Hanneken, M. Menzel [et al.] // Science. — 2013. — Vol. 341. — P. 636–639.
- [25] Lan, J. Spin-Wave Diode [Text] / J. Lan, W. Yu, R. Wu, J. Xiao // Phys. Rev. X. 2015. — Vol. 5, no. 4. — P. 041049.
- [26] Chen, J. Unidirectional spin-wave propagation and devices [Text] / J. Chen, H. Yu, G. Gubbiotti // J. Phys. D: Appl. Phys. — 2021. — Vol. 55. — P. 123001.
- [27] Fert, A. Magnetic skyrmions: advances in physics and potential applications [Text] / A. Fert,
 N. Reyren, V. Cros // Nat. Rev. Mater. 2017. Vol. 2. P. 1–15.
- [28] Song, K. M. Skyrmion-based artificial synapses for neuromorphic computing [Text] /
 K. M. Song, J.-S. Jeong, B. Pan [et al.] // Nat. Electron. 2020. Vol. 3. P. 148–155.
- [29] Smith, A. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices
 [Text] / A. Smith, C. R. H. Bahl, R. Bjørk [et al.] // Adv. Energy Mater. 2012. —
 Vol. 2. P. 1288–1318.

Список публикаций автора по теме диссертации

Статьи в журналах из перечня ВАК:

- [A1] Magnetocaloric effect in exchange-coupled strong/weak/strong ferromagnet stacks [Text] /
 M. A. Kuznetsov, I. Y. Pashenkin, N. I. Polushkin, M. V. Sapozhnikov, and A. A. Fraerman // J. Appl. Phys. 2020. Vol. 127, P. 183904.
- [A2] Кузнецов, М. А. Магнитокалорический эффект в наносистемах на основе ферромагнетиков с различными температурами Кюри [Текст] / М. А. Кузнецов, А. Б. Дровосеков, А. А. Фраерман // ЖЭТФ. — 2021. — Т. 159, — С. 79.
- [A3] Kuznetsov, M. A. Temperature-sensitive spin-wave nonreciprocity induced by interlayer dipolar coupling in ferromagnet/paramagnet and ferromagnet/superconductor hybrid systems [Text] / M. A. Kuznetsov and A. A. Fraerman, // Phys. Rev. B. — 2022. — Vol. 105. — P. 214401.
- [A4] Kuznetsov, M. A. Effective interfacial Dzyaloshinskii-Moriya interaction and skyrmion stabilization in ferromagnet/paramagnet and ferromagnet/superconductor hybrid systems
 [Text] / M. A. Kuznetsov, K. R. Mukhamatchin, and A. A. Fraerman // Phys. Rev. B. 2023. Vol. 107. P. 184428.
- [A5] Кузнецов, М. А. Магнитостатический механизм нарушения киральной симметрии в многослойных магнитных структурах [Текст] / М. А. Кузнецов, А. А. Фраерман // ЖЭТФ. – 2023. – Т. 164, – С. 514.

[A6] Kuznetsov, M. A. Exchange enhancement of magnetocaloric effect in a ferromagnet/antiferromagnet/ferromagnet layered structure [Text] / M. A. Kuznetsov and E. A. Karashtin // Phys. Rev. B [Accepted].

Публикации в трудах конференций:

- [B1] Усиление магнитокалорического эффекта в многослойных структурах парамагнетик/ферромагнетик [Текст] / М А. Кузнецов, И. Ю. Пашенькин, Н. И. Полушкин [и др.] // ХХІV международный симпозиум «Нанофизика и наноэлектроника» (Н. Новгород, 10-13 марта 2020 г). — Т. 1. — Н. Новгород : Институт физики микроструктур РАН, 2020. — С. 219–220.
- [B2] Кузнецов, М. А. Невзаимные спиновые волны в системе «сильный»/«слабый» ферромагнетик [Текст] / М. А. Кузнецов, А. А. Фраерман // XXV международный симпозиум «Нанофизика и наноэлектроника» (Н. Новгород, 9-12 марта 2021 г). Т. 1. Н. Новгород : Институт физики микроструктур РАН, 2021. С. 183–184.
- [B3] Кузнецов, М. А. Невзаимные спиновые волны в ферромагнитной пленке с экраном [Текст] / М. А. Кузнецов, А. А. Фраерман // Сборник трудов XXIV Международной конференции «Новое в магнетизме и магнитных материалах» (Москва, 1–8 июля 2021 г.). — Москва : МИРЭА - Российский технологический университет, 2021 — С. 5-20–5-23.
- [B4] Kuznetsov, M. A. Problem of magnetostatic skyrmion stabilization in ferromagnet/X (X = paramagnet, superconductor) hybrid systems [Text] / M. A. Kuznetsov, K. R. Mukhamatchin, and A. A. Fraerman // VIII Euro-Asian Symposium «Trends in MAGnetism» (Russia, Kazan, August 22-26, 2022). Vol. 2. Kazan : Zavoisky Physical-Technical Institute, 2022. P. 389–391.
- [B5] Увеличение магнитокалорической эффективности ультратонкой прослойки Gd между сильными ферромагнетиками [Текст] / И. Ю. Пашенькин, М. А. Кузнецов, Н. И. Полушкин [и. др.] // ХХVI международный симпозиум «Нанофизика и наноэлектроника» (Н. Новгород, 14-17 марта 2022 г). — Т. 1. — Н. Новгород : Институт физики микроструктур РАН, 2022. — С. 327–328.

- [B6] Кузнецов, М. А. Эффективное взаимодействие Дзялошинского-Мории в гибридных системах ферромагнетик/парамагнетик и ферромагнетик/сверхпроводник [Текст] / М. А. Кузнецов, К. Р. Мухаматчин, А. А. Фраерман // ХХVII международный симпозиум «Нанофизика и наноэлектроника» (Н. Новгород, 13-16 марта 2023 г). Т. 1. Н. Новгород : Институт физики микроструктур РАН, 2023. С. 230–231.
- [В7] Обменное усиление магнитокалорического эффекта в наноструктурах [Текст] /
 М. А. Кузнецов, И. Ю. Пашенькин, Н. И. Полушкин [и др.] // Дни калорики в Дагестане: функциональные материалы и их приложения (Дербент, 27-31 мая 2023 г). — Дербент : Институт физики им. Х. И. Амирханова ДФИЦ РАН, 2023. — С. 65–67.
- [B8] Кузнецов, М. А. Обменное усиление магнитокалорического эффекта в структуре ферромагнетик/антиферромагнетик/ферромагнетик [Текст] / М. А. Кузнецов, Е. А. Караштин // XXVIII международный симпозиум «Нанофизика и наноэлектроника» (Н. Новгород, 11-15 марта 2024 г). — Т. 1. — Н. Новгород : Институт физики микроструктур РАН, 2024. — С. 280–281.