|
1. S. G. Zybtsev, V. Y. Pokrovskii, V. F. Nasretdinova, S. V. Zaitsev-Zotov, E. Zupanič, M. A. van Midden, Woei Wu Pai, The ultra-high-TP charge-density wave in the monoclinic phase of NbS3, Journal of Alloys and Compounds, 157098 (2020)); https://doi.org/10.1016/j.jallcom.2020.157098; impact 4.
2. V. E. Minakova, A. M. Nikitina, S. V. Zaitsev-Zotov, Forced Diffusion of Correlated Impurities in Peierls Conductor o-TaS3, JETP Letters, 1−8 (2020)); https://doi.org/10.1134/S0021364020180022; impact 1.4.
3. I. A. Cohn, S. G. Zybtsev, A. P. Orlov, S. V. Zaitsev-Zotov, Magnetoresistance in Quasi-one Dimensional Weyl Semimetal (TaSe4)2I, JETP Letters, 112, 88−94 (2020); https://doi.org/10.1134/S0021364020140040; impact 1.4.
4. S. V. Zaitsev-Zotov, I. A. Cohn, Non-quadratic Transverse Magnetoresistance in Nodal Line Dirac Semimetal InBi, JETP Letters, 111, 50−54 (2020); https://doi.org/10.1134/S0021364020010063; impact 1.4.
5. V. E. Minakova, A. N. Taldenkov, S. V. Zaitsev-Zotov, Soliton Photoconduction in the Charge-Density-Wave Conductor Orthorhombic TaS3, JETP Letters 110, 200−205 (2019); https://doi.org/10.1134/S0021364019150037; impact 1.4.
6. V. E. Minakova, A. M. Nikitina, S. V. Zaitsev-Zotov, A New Type of Charge-Density-Wave Pinning in Orthorhombic TaS3 Crystals with Quenching Defects, JETP letters 110, 62−67 (2019); https://doi.org/10.1134/S0021364019130034; impact 1.4.
7. S. G. Zybtsev, V. Ya. Pokrovskii, V. F. Nasretdinova, S. V. Zaitsev-Zotov, V. V. Pryadun, E. S. Kozlyakova, O. S. Volkova, A. N. Vasiliev, W. W. Pai, D. Starešinić, Thermoelectric power and its correlation with conductivity in whiskers, Physical Review B 99, 235155 (2019), https://doi.org/10.1103/PhysRevB.99.235155; impact 3.736.
8.M. Abdel-Hafiez, R. Thiyagarajan, A. Majumdar, R. Ahuja, W. Luo, A. N. Vasiliev, A. A. Maarouf, S. G. Zybtsev, V. Ya. Pokrovskii, S. V. Zaitsev-Zotov, V. V. Pavlovskiy, W. W. Pai, W. Yang, L. V. Kulik, Pressure-induced reentrant transition in phases: Combined Raman scattering and x-ray diffraction study, Physical Review B 99, 235126 (2019);https://doi.org/10.1103/PhysRevB.99.235126; impact 3.736.
9. N. Fedotov, S. Zaitsev-Zotov, Experimental Observation of Bound States of 2D Dirac Electrons at Surface Steps of the Topological Insulator Bi2Se3, Phys. Status Solidi RRL 13, 1800617 (2019) https://doi.org/10.1002/pssr.201800617; impact 3.729.
10. N.I. Fedotov, S. V. Zaitsev-Zotov, Numerical analysis of surface and edge states in slabs, stripes, rods and surface steps of topological insulators, Journal of Physics: Condensed Matter, 30, No 48, 485301 (2018). https://doi.org/10.1088/1361−648X/aae9d7; Impact 2.617.
11. E. Zupanič, H. J. P. van Midden, M. A. van Midden, S. Šturm, E. Tchernychova, V. Ya. Pokrovskii, S. G. Zybtsev, V. F. Nasretdinova, S. V. Zaitsev-Zotov, W. T. Chen, Woei Wu Pai, J. C. Bennett, A. Prodan, Basic and charge density wave modulated structures of NbS3-II, Physical Review B 98 (17), 174113 (2018), https://doi.org/10.1103/PhysRevB.98.174113; Impact 3.718.
12. N. I. Fedotov, S. V. Zaitsev-Zotov, Experimental search for one-dimensional edge states at surface steps of the topological insulator Bi32Se3: Distinguishing between effects and artefacts, Phys. Rev. B 95, 155403 (2017). https://doi.org/10.1103/PhysRevB.95.155403; Impact 3.718.
13. A. B. Odobescu, A. A. Maizlakh, N. I. Fedotov, S. V. Zaitsev-Zotov, Electronic correlation effects and Coulomb gap in the Si (111)-(3×3)-Sn surface, Phys. Rev. B 95 (19), 195151 (2017). https://doi.org/10.1103/PhysRevB.95.195151; Impact 3.718.
14. S. G. Zybtsev, V. Ya. Pokrovskii, V. F. Nasretdinova, S. V. Zaitsev-Zotov, V. V. Pavlovskiy, A. B. Odobesco, W. W. Pai, M.-W. Chu, Y. G. Lin, E. Zupanic, H. J. P. van Midden, S. Sturm, E. Tchernychova, A. Prodan, J. C. Bennett, I. R. Mukhamedshin, O. V. Chernysheva, A. P. Menushenkov, V. B. Loginov, B. A. Loginov, A. N. Titov, and M. Abdel-Hafiez, NbS3: A unique quasi-one-dimensional conductor with three charge density wave transitions, Phys. Rev. B 95, 035110 (2017). https://doi.org/10.1103/PhysRevB.95.035110; Impact 3.718.
15. N. I. Fedotov, S.V. Zaitsev-Zotov, Energy gap in tunneling spectroscopy: Effect of the chemical potential shift. JetpLett. 104, 800−805 (2016). https://doi.org/10.1134/S0021364016230028; Impact 1.172.