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We demonstrate a generalization of relativistic quantum mechanics using eight-
component value “octons” that generate an associative noncommutative spatial
algebra. It is shown that the octonic second-order equation for the eight-component
octonic wave function, obtained from the Einstein relation for energy and momen-
tum, describes particles with spin 1/2. It is established that the octonic wave func-
tion of a particle in the state with defined spin projection has a specific spatial
structure that takes the form of an octonic oscillator with two spatial polarizations:
longitudinal linear and transverse circular. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3058644�

I. INTRODUCTION

Multicomponent hypernumbers1–5 are widely used in relativistic mechanics, electrodynamics,
quantum mechanics, and quantum field theory.6–24 For instance, the structure of four-component
quaternions adequately conforms to the four-dimensional character of space-time and enables the
development quaternionic generalizations of quantum mechanics,6–12 where particles are described
by four-component wave functions consisting of scalar and vector parts. However, quaternionic
wave functions have no pseudoscalar and pseudovector properties and are transformed incorrectly
with respect to spatial inversion. Therefore it seems that eight-component values including scalar,
pseudoscalar, vector, and pseudovector components are more appropriate for the description of
relativistic quantum systems.

However, attempts to describe relativistic particles by means of different eight-component
hypernumbers such as biquaternions,5,15,16 octonions,17–21 and multivectors generating associative
Clifford algebras22–24 have not made appreciable progress. For example, the few attempts to
describe relativistic particles by means of octonion wave functions are confronted by difficulties
connected with octonions nonassociativity.19 Moreover all systems of hypercomplex numbers,
which have been applied up to now for the generalization of quantum mechanics �quaternions,
biquaternions, octonions, and multivectors�, are the objects of hypercomplex space and do not
have any consistent space-geometric interpretation.

Recently we proposed eight-component value “octons”25 generating a closed noncommutative
associative algebra and having a clear well-defined geometric interpretation. From the geometrical
point of view an octon is the object of the real three-dimensional space. It is the sum of a scalar,
pseudoscalar, vector, and pseudovector. In Ref. 25 octons were successfully applied to the descrip-
tion of the classical electromagnetic field. In this paper we propose the generalization of relativ-
istic quantum mechanics using octonic equations for eight-component octonic wave functions.

II. ALGEBRA OF OCTONS

To begin with we will briefly review the basic properties of octons. The eight-component

octon Ğ is defined in the form
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Ğ = c0e0 + c1e1 + c2e2 + c3e3 + d0a0 + d1a1 + d2a2 + d3a3,

where e0�1, values e1, e2, e3 are axial unit vectors �pseudovectors�, a0 is the pseudoscalar unit,
and a1, a2, a3 are polar unit vectors. The octon’s components cn and dn �n=0,1 ,2 ,3� are numbers
�complex, in general�. Thus the octon is the sum of a scalar, pseudovector, pseudoscalar, and
vector. The values a1, a2, a3 and e1, e2, e3 are the polar and axial bases of the octon, respectively.
The algebra of octons was discussed in detail in Ref. 25. Here we briefly recall the basic com-
mutation and multiplication rules, which are represented in the Table I.

In Table I and below the value i is the imaginary unit.

III. OCTONIC WAVE FUNCTION AND SPATIAL OPERATORS

Let us consider the wave function of a relativistic particle in the form of an eight-component
octon,

�̆ = �0 + �1e1 + �2e2 + �3e3 + �0a0 + �1a1 + �2a2 + �3a3. �1�

The components ���r� , t� and ���r� , t� ��=0,1 ,2 ,3� are scalar �complex, in general� functions
of spatial coordinates and time. The octonic wave function �1� can be also written in the compact
form,

�̆ = �0 + �J + �̃0 + �� ,

where the pseudovector part is indicated by a double arrow “↔,” the pseudoscalar part by a wave
“�,” and the vector part by an arrow “→.” The Lorentz transform of the octonic wave function is
represented in Appendix A.

The wave function of a free particle should satisfy an equation, which is obtained from the
Einstein relation between particle energy and momentum,

E2 − p2c2 = m2c4,

by substituting the classical momentum p� and energy E by the corresponding quantum-mechanical

operators p�̂ =−i��� and Ê= i�� /�t. This equation has the following form:

� 1

c2

�2

�t2 − ���̆ = −
m2c2

�2 �̆ . �2�

Here c is the velocity of light, m is the mass of the particle, and � is the Plank constant. In contrast
to the scalar Klein–Gordon equation26 the expression �2� is the octonic equation since it is written

for the octonic function. It is clear that each of the �̆ components satisfies the scalar Klein–Gordon
equation.

The operator in the left part of Eq. �2� can be represented as the product of two operators,

TABLE I. The rules of multiplication and commutation for the octon’s unit vectors.

e1 e2 e3 a0 a1 a2 a3

e1 1 ie3 −ie2 a1 a0 ia3 −ia2

e2 −ie3 1 ie1 a2 −ia3 a0 ia1

e3 ie2 −ie1 1 a3 ia2 −ia1 a0

a0 a1 a2 a3 1 e1 e2 e3

a1 a0 ia3 −ia2 e1 1 ie3 −ie2

a2 −ia3 a0 ia1 e2 −ie3 1 ie1

a3 ia2 −ia1 a0 e3 ie2 −ie1 1
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�1

c

�

�t
− �� ��1

c

�

�t
+ �� ��̆ = −

m2c2

�2 �̆ . �3�

Here we assume that the octonic wave function �̆ is twice continuously differentiable, so

��� ��� ��̆=0. �The operations of vector ��� and scalar �·� octonic multiplication were considered
in Ref. 25.� Equation �3� can be written in the expanded form,

�1

c

�

�t
−

�

�x1
a1 −

�

�x2
a2 −

�

�x3
a3��1

c

�

�t
+

�

�x1
a1 +

�

�x2
a2 +

�

�x3
a3��̆�r�,t� = −

m2c2

�2 �̆�r�,t� . �4�

Note that unit vectors a1, a2, a3 in the left part of Eq. �4� transform the spatial structure of the
wave function by means of octonic multiplication. In this sense they can be treated as spatial
operators â1, â2, â3, which transform the octon of the wave function. For example, the action of

the operator â1 can be represented as octonic multiplication of the unit vector a1 and octon �̆,

â1�̆ = a1�̆ = �1 + �0e1 − i�3e2 + i�2e3 + �1a0 + �0a1 − i�3a2 + i�2a3. �5�

Further we will use symbolic designations â1, â2, â3 in the operator part of equations but a1, a2, a3
designations in wave functions. Then Eq. �4� can be rewritten in the operator form,

�1

c

�

�t
−

�

�x1
â1 −

�

�x2
â2 −

�

�x3
â3��1

c

�

�t
+

�

�x1
â1 +

�

�x2
â2 +

�

�x3
â3��̆�r�,t� = −

m2c2

�2 �̆�r�,t� .

On the other hand expression �5� can be represented in equivalent matrix form as the action of the
matrix operator â1 on the eight-component column of the wave function, so â1 can be written as
the 8�8 matrix,

â1�
�0

�1

�2

�3

�0

�1

�2

�3

	 =�
�1

�0

− i�3

i�2

�1

�0

− i�3

i�2

	⇒ â1 =�
0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 − i

0 0 0 0 0 0 i 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 − i 0 0 0 0

0 0 i 0 0 0 0 0

	 .

The matrix representations for the rest octonic operators â2, â3, â0, ê1, ê2, ê3 are given in the
Appendix B. Further we will use the vector designation for the operators of the octon’s basis since
it is more compact.

IV. EIGENVALUES AND EIGENFUNCTIONS OF OCTONIC SPATIAL OPERATORS

Let us consider the eigenvalues and eigenfunctions of spatial operators used as an example the
operator ê3, which will be used below for the description of the particle in a homogeneous
magnetic field. The equation for the eigenvalues and eigenfunctions in this case has the following
form:

ê3�̆ = ��̆ . �6�

Performing octonic multiplication in the left part of �6� and equating components, we obtain the
system of eight scalar equations, which is equivalent to the following system:

�2 = 1,
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�3 = ��0,

�2 = i��1, �7�

�3 = ��0,

�2 = i��1.

The first equation in �7� shows that �= 	1. For each eigenvalue � there is a four-dimensional
subspace of eigenfunctions. Taking into account �7� we can choose the set of functions

�1 + e3�,�e1 + ie2�,�a0 + a3�,�a1 + ia2� �8�

as the basis of the subspace corresponding to eigenvalue �= +1 and set of functions

�1 − e3�,�e1 − ie2�,�a0 − a3�,�a1 − ia2� �9�

as the basis of the subspace corresponding to �=−1. Then arbitrary eigenfunctions of the operator
ê3 corresponding to �= 	1 can be represented in the form of linear combinations of the basis
functions �8� or �9�,

�̆�=1 = F1
�1��r�,t��1 + e3� + F2

�1��r�,t��e1 + ie2� + F3
�1��r�,t��a0 + a3� + F4

�1��r�,t��a1 + ia2� , �10�

�̆�=−1 = F1
�−1��r�,t��1 − e3� + F2

�−1��r�,t��e1 − ie2� + F3
�−1��r�,t��a0 − a3� + F4

�−1��r�,t��a1 − ia2� ,

�11�

where F�
����r� , t� are arbitrary scalar functions of space coordinates and time ��=1,2 ,3 ,4; �

= 	1�.
It is obvious that eigenvalues and eigenfunctions of the operator ê3 could also be obtained

using the matrix representation.
The eigenfunctions of other octonic spatial operators are shown in Appendix C.

V. OCTONIC EQUATION FOR A RELATIVISTIC PARTICLE IN AN EXTERNAL
ELECTROMAGNETIC FIELD

To describe a particle in an external electromagnetic field the following change in quantum-
mechanical operators in equations should be made:26

Ê → Ê − e
, p�̂ → p�̂ −
e

c
A� , �12�

where 
 and A� are scalar and vector potentials of the electromagnetic field and e is the particle
charge �e�0 for the electron�. The change �12� is equivalent to the following change in differen-
tial operators:

�

�t
→

�

�t
+

ie

�

, �� → �� −

ie

�c
A� . �13�

Using substitution �13�, Eq. �3� can be written as

�1

c

�

�t
+

ie

�c

 − �� +

ie

�c
A���1

c

�

�t
+

ie

�c

 + �� −

ie

�c
A���̆ = −

m2c2

�2 �̆ . �14�

The multiplication of octonic operators in the left part of �14� leads to the following equation:
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 1

c2

�2

�t2 − � +
2ie

�c
��A� · �� � +




c

�

�t
� +

m2c2

�2 +
e2

�2c2 �A2 − 
2���̆ −
e

�c
HJ �̆ +

ie

�c
E� �̆ = 0. �15�

Here we have taken into account that E� =−�� 
− �1 /c���A� /�t� is the vector of the electric field and

HJ =−i��� �A� � is the pseudovector of the magnetic field. ��� ·A� �+ �1 /c���
 /�t�=0 in the Lorentz

gauge. The scalar ��� ·A� � and vector ��� �A� � octonic products were considered in Ref. 25. Note that

the octonic equation �15� encloses the specific terms �e /�c�HJ �̆ and �ie /�c�E� �̆, where the fields E�

and HJ play the role of spatial octonic operators.

VI. OCTONIC EQUATION FOR A NONRELATIVISTIC PARTICLE IN AN EXTERNAL
ELECTROMAGNETIC FIELD

The nonrelativistic octonic equation for a particle in an electromagnetic field can be obtained
directly from the Schrödinger equation. The octonic Hamiltonian for the free particle has the form

Ĥ0 =
p�̂2

2m
= −

�2

2m
� . �16�

The octonic equation for the octonic wave function corresponding to Hamiltonian �16� can be
written in the following form:

i�
��̆

�t
= Ĥ0�̆ .

In the absence of an electromagnetic field this equation is equivalent to eight scalar Schrödinger
equations �one for each component of the octonic wave function�.

To describe a particle in an electromagnetic field the quantum-mechanical operators should be

changed as follows: Ĥ0→ Ĥ= Ĥ0+e
, �� →�� − �ie /�c�A� . In this case we obtain

Ĥ = −
�2

2m
��� −

ie

�c
A��2

+ e
 . �17�

Multiplying the octonic operators in �17� we get

Ĥ = −
�2

2m
� +

i�e

2mc
��� · A� � +

i�e

mc
�A� · �� � +

e2

2mc2A2 + e
 −
�e

2mc
HJ . �18�

Thus the nonstationary octonic equation for a nonrelativistic particle in an electromagnetic
field can be written as

i�
��̆

�t
= Ĥ�̆ .

In a stationary state with energy E the wave function satisfies the following equation:

−
�2

2m
��̆ +

i�e

2mc
��� · A� ��̆ +

i�e

mc
�A� · �� ��̆ +

e2

2mc2A2�̆ + e
�̆ −
�e

2mc
HJ �̆ = E�̆ . �19�

Note that the last term −��e /2mc�HJ in the Hamiltonian �18� is a pseudovector operator, which
transforms the spatial structure of the octonic wave function.

VII. NONRELATIVISTIC PARTICLE IN HOMOGENEOUS MAGNETIC FIELD

Let us find the stationary state of a particle in a homogeneous magnetic field. Let the
pseudovector of the magnetic field intensity be directed along the Z axis in the XYZ basis,
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HJ = Be3.

We select the vector potential in the gauge ��� ·A� �=0,

A� = Aya2 = Bxa2.

Then the Eq. �19� can be written in the following form:

−
�2

2m
��̆ +

i�e

mc
Bx

��̆

�y
+

e2

2mc2B2x2�̆ −
�e

2mc
Bê3�̆ = E�̆ . �20�

Note that operators p̂y =−i�� /�y and p̂z=−i�� /�z commute with Hamiltonian �18�, and all of
them have common eigenfunctions. Therefore we will search for a solution of Eq. �20� in the
following form:

�̆�r�� = W̆�x�e�i/���pyy+pzz�, �21�

where py and pz are the motion integrals. Substituting �21� into �20�, we get


−
�2

2m

�2

�x2 +
py

2

2m
+

pz
2

2m
−

epy

mc
Bx +

e2

2mc2B2x2 −
�e

2mc
Bê3�W̆ = EW̆ . �22�

Note that Hamiltonian �18� commutes also with the octonic pseudovector operator ê3, so the
solutions of Eq. �20� are also eigenfunctions of the operator ê3. This means that in this task there
is another quantum number � �eigenvalue of the operator ê3�, which takes on the values �= 	1.
Therefore we will search for a solution of Eq. �22� in the form of eigenfunctions of the operator
ê3 �see �10� and �11��,

W̆ = F1
����x��1 + �e3� + F2

����x��e1 + �ie2� + F3
����x��a0 + �a3� + F4

����x��a1 + �ia2� . �23�

Then the operator in the left part of �22� is scalar, and the equation can be written as

−
�2

2m

�2W̆

�x2 +
py

2

2m
W̆ +

pz
2

2m
W̆ −

epy

mc
BxW̆ +

e2

2mc2B2x2W̆ −
�e

2mc
B�W̆ = EW̆ . �24�

In fact, Eq. �24� is the system of four identical scalar equations for the functions F�
����x�, where

�=1,2 ,3 ,4 �see �23��. For the fixed � the functions F�
����x� can differ only by a constant.

The equation for each function F�
����x� has the following form:

−
�2

2m

�2F�
���

�x2 +
py

2

2m
F�

��� +
pz

2

2m
F�

��� −
epy

mc
BxF�

��� +
e2

2mc2B2x2F�
��� −

�e

2mc
B�F�

��� = EF�
���. �25�

After algebraic transformations Eq. �25� can be represented in the form

�2F�
���

�x2 +
2m

�2 ��E −
pz

2

2m
+ �

�e

2mc
B� −

m

2
� eB

mc
�2�x −

cpy

eB
�2
F�

��� = 0. �26�

On the basis of Eq. �26� we obtain the expression for the energy spectrum of a nonrelativistic
particle in a homogeneous magnetic field,

En,� =
pz

2

2m
+

��e�B
mc

�n +
1

2
� − �

�e

2mc
B . �27�

This set of energies is absolutely identical to the energy spectrum obtained from the nonrelativistic
Pauli equation.27 Thus the octonic equation �19� enables the description of the spin interaction
with the magnetic field.
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VIII. RELATIVISTIC PARTICLE IN A HOMOGENEOUS MAGNETIC FIELD

Let us consider a relativistic particle in an external magnetic field directed along the Z axis,

HJ =Be3, A� =Aya2=Bxa2, and assume the condition ��� ·A� �=0. Then the octonic equation for a
relativistic particle �15� in the XYZ basis can be written as

1

c2

�2�̆

�t2 − ��̆ +
2ie

�c
Bx

��̆

�y
+

m2c2

�2 �̆ +
e2

�2c2B2x2�̆ −
e

�c
HJ �̆ = 0.

For the stationary state with the energy E we get


− � +
2ie

�c
Bx

�

�y
+

m2c2

�2 +
e2

�2c2B2x2 −
e

�c
Bê3��̆ =

E2

�2c2 �̆ . �28�

This equation can be considered as the equation for the eigenvalues and eigenfunctions of the
complicated operator placed in the left part. Since this operator commutes with operators p̂y and
p̂z, all of them have the general system of eigenfunctions. Therefore we will search for a solution
of �28� in the form

�̆ = W̆�x�e�i/���pyy+pzz�, �29�

where py and pz are the motion integrals. Substituting �29� into �28� we get


 py
2

�2 +
pz

2

�2 −
�2

�x2 −
2epy

�2c
Bx +

m2c2

�2 +
e2

�2c2B2x2 −
e

�c
Bê3�W̆ =

E2

�2c2W̆ . �30�

Note that operator in the left part of �30� commutes also with ê3, so we can search for a solution
as the eigenfunctions of the operator ê3 �10� and �11�,

W̆ = F1
����x��1 + �e3� + F2

����x��e1 + �ie2� + F3
����x��a0 + �a3� + F4

����x��a1 + �ia2� .

So we get scalar equations for the functions F�
����x� �where �=1,2 ,3 ,4�,

py
2

�2F�
��� +

pz
2

�2F�
��� −

�2F�
���

�x2 −
2epy

�2c
BxF�

��� +
m2c2

�2 F�
��� +

e2

�2c2B2x2F�
��� −

e

�c
B�F�

��� =
E2

�2c2F�
���.

�31�

After some algebraic transformations Eq. �31� can be represented as

�2F�
���

�x2 + 
� E2

�2c2 −
pz

2

�2 −
m2c2

�2 + �
eB

�c
� − � eB

�c
�2�x −

cpy

eB
�2�F�

��� = 0.

Then the energy spectrum is defined by the following expression:

En,�
2 = m2c4 + pz

2c2 + �e�B�c�2n + 1� − �eB�c . �32�

This set of energies is absolutely identical to the energy spectrum obtained from the relativistic
second-order equation following from the Dirac equation.26 Note that in the nonrelativistic limit
the energy levels �32� are transformed to �27� for the levels counted out of the rest energy.

If the wave function is the eigenfunction of the operator ê3, then some general statements
about the spatial structure of the wave function can be made. In the stationary state with energy E
the wave function can be represented in the following form:

�̆�r�,t� = �̆�r��e−i�t, �33�

where �=E /�. If the eigenvalue of the operator ê3 is defined, the spatial part of the wave function
can be written as the linear combination,
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�̆�r�� = F1�r���1 + �e3� + F2�r���e1 + �ie2� + F3�r���a0 + �a3� + F4�r���a1 + �ia2� . �34�

The wave function �33� with spatial part �34� has a simple geometrical image. The real and
imaginary parts of the component �1+�e3�e−i�t are a combination of a pseudovector directed
parallel to the Z axis and a scalar oscillating with the frequency �. Here the phase difference
between oscillations of scalar and pseudovector parts equals 0 in case of �=1 or 
 in case of �
=−1. The real and imaginary parts of the component �a1+�ia2�e−i�t have the form of polar vectors
rotating in the plane perpendicular to the Z axis also with the frequency �. The direction of the
rotation depends on the sign of �. When �= +1 a vector of angular velocity is directed along the
Z axis but when �=−1 this vector has the opposite direction. The rest of the components of the
wave function �34� have a similar interpretation.

Thus in octonic quantum mechanics the wave function of the particle with definite spin
projection has the space-time structure of the octonic oscillator �33� and �34� with longitudinal
linear and transverse circular spatial polarizations.

IX. DISCUSSION

One of the starting points for constructing the relativistic quantum theory is the Einstein
relation between energy and momentum of the particle, which is written as

E2 = p�2c2 + m2c4.

In relativistic quantum mechanics this relation is written as the operator equation for the wave
function

�Ê2 − p�̂2c2�� = m2c4� . �35�

This equation contains the scalar operator p�̂2= p̂x
2+ p̂y

2+ p̂z
2. The form of the operator p�̂ , in general,

is ambiguous. Equation �35� can be realized by means of different operators and wave functions.
For example, choosing a scalar wave function and the operator p�̂ represented by Gibbs unit vectors

i�, j�, k�,

p�̂ = p̂xi� + p̂y j� + p̂zk� ,

we can obtain the well known Klein–Gordon equation describing spinless particles. Moreover one
can consider the following matrix expression for the p�̂ operator:

p�̂ = p̂x�̂x + p̂y�̂y + p̂z�̂z,

where �̂x, �̂y, �̂z are some matrices. For example, the Pauli matrices or the Dirac matrices can be
used as �̂s �s= �x ,y ,z��. It is only necessary that these matrices anticommute and that �s

2=1 to
obtain p�̂2= p̂x

2+ p̂y
2+ p̂z

2. There are also other approaches to the operator p�̂ representation by
quaternions.14,18

From this point of view it is not surprising that the proposed octonic wave function and
octonic momentum operator in the form

p�̂ = p̂xa1 + p̂ya2 + p̂za3 �36�

also realize the right representation of Eq. �35�. However, we emphasize that octonic representa-
tion of the operator p�̂ �36� is distinguished since it allows the conservation of the vector interpre-
tation of p�̂ and ensures the correct space transformation properties.

In octonic algebra the classical Einstein relation for the particle in an electromagnetic field can
be represented in the form
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�E − e
 + p�c − eA� ��E − e
 − p�A + eA� � = m2c4. �37�

Performing octonic multiplication in the left part of �37� and gathering terms, we get

E2 − 2e
E + e2
2 − p�2c2 + 2ec�p� · A� � − e2A� 2 = m2c4

or

�E − e
�2 − �p� −
e

c
A��2

c2 = m2c4. �38�

Thus octonic relations �37� and �38� in classical relativistic mechanics are absolutely equivalent.
Note that these relations are as valid in octon’s algebra as in Gibbs vectors algebra.

However, in quantum mechanics the situation is cardinally changed. The octonic operator
equation obtained from �37� can be represented as

�Ê − e
 + p�̂c − eA� ��Ê − e
 − p�̂c + eA� ��̆ = m2c4�̆ , �39�

but the equation obtained from �38� can be written as

��Ê − e
�2 − �p�̂ −
e

c
A��2

c2��̆ = m2c4�̆ . �40�

Equations �39� and �40� are essentially nonequivalent. In fact, Eq. �39� after octonic multiplication
leads us to �15� but Eq. �40� leads us to the following one:


− � +
1

c2

�2

�t2 +
2ie

�c
��A� · �� � +




c

�

�t
� +

m2c2

�2 +
e2

�2c2 �A2 − 
2���̆ −
e

�c
HJ �̆ = 0.

This expression differs from �15� by the absence of the term describing the interaction of the
particle with the electric field. Therefore the representation of the Einstein relation in the form �37�
is more adequate than �38� from the point of view of the description of the particle in the
electromagnetic field.

Consequently in octonic quantum mechanics the second-order equation correctly describing
the interaction of spin with the electromagnetic field is obtained directly from the Einstein relation
in contrast to the Dirac theory where the first-order equation is used to obtain this equation.

Also the algebra of octons enables the derivation of the nonrelativistic equation, which cor-
rectly describes interaction of spin with a magnetic field, directly from the Schrödinger equation.
Indeed the Schrödinger Hamiltonian contains the operator p�̂2, which is modified in the presence of
magnetic field by

p�̂2 → �p�̂ −
e

c
A��2

. �41�

The octonic multiplication of operators in �41� leads to the appearance of the term, which
corresponds to the interaction of spin with the magnetic field �see �18��. In the Pauli theory the
equation analogous to �19� is postulated. Accordingly the application of the octon’s algebra leads
to the adequate description of relativistic and nonrelativistic quantum particles in an external
electromagnetic field. In octonic quantum mechanics a concept of spin is closely connected with
spatial properties of octonic operators and octonic wave functions. In the state with definite spin
projection the wave function has a complicated space-time structure in which vector and
pseudovector components perform either spatial oscillations along the Z direction in the case of
longitudinal polarization or rotations in the perpendicular plane in the case of transverse polariza-
tion of the octonic oscillator.
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X. CONCLUSION

In this paper we proposed a scheme for constructing relativistic quantum mechanics using
octonic spatial operators and octonic wave functions. It was shown that the octonic second-order
equation, corresponding to the Einstein relation between energy and momentum, correctly de-
scribes the interaction between spin and the electromagnetic field. It is established that the octonic
wave function of a particle in the state with defined spin projection has the specific space-time
structure in the form of an octonic oscillator with two spatial polarizations: longitudinal linear and
transverse circular.
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APPENDIX A: LORENTZ TRANSFORMATION OF THE OCTONIC WAVE FUNCTION

The Lorentz transformation of the octonic wave function �̆ is given by the octon

S̆ = ch�u/2� − sh�u/2�n� , �A1�

where th u=v /c, v is the velocity of motion along the unit vector n� . The transformed function �̆�
is defined by the octonic product

�̆� = S̆�̆S̆ . �A2�

The transformed function �̆� can be written on the basis of �A1� and �A2� as

�̆� = �ch�u/2� − sh�u/2�n����0 + �J + �̃0 + �� ��ch�u/2� − sh�u/2�n��

= �0 ch u + �� − �0n� sh u − �n� · �� �sh u − �1 − ch u��n� · �� �n� + �̃0 ch u + �J − �̃0n� sh u

− �n� · �J�sh u − �1 − ch u��n� · �J�n� .

The components of transformed octonic function have the following structure:

�0� = �0 ch u − �n� · �� �sh u ,

�̃0� = �̃0 ch u − �n� · �J�sh u ,

��� = �� − �0n� sh u − �1 − ch u��n� · �� �n� ,

�J� = �J − �̃0n� sh u − �1 − ch u��n� · �J�n� .

It is seen that scalar �0 and pseudoscalar �̃0 parts of the octonic wave function are transformed as
the timelike components. The longitudinal �relative to the direction n�� components of the octonic
wave function �J� and �� � are transformed as coordinates while transverse components �J� and ���

are not transformed.
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APPENDIX B: MATRIX FORM FOR OPERATORS OF OCTONIC BASIS

The operators of octonic basis can be represented in the following matrix form �see �10��:

â1 =�
0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 − i

0 0 0 0 0 0 i 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 − i 0 0 0 0

0 0 i 0 0 0 0 0

	 , â2 =�
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 i

0 0 0 0 1 0 0 0

0 0 0 0 0 − i 0 0

0 0 1 0 0 0 0 0

0 0 0 i 0 0 0 0

1 0 0 0 0 0 0 0

0 − i 0 0 0 0 0 0

	 ,

â3 =�
0 0 0 0 0 0 0 1

0 0 0 0 0 0 − i 0

0 0 0 0 0 i 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 − i 0 0 0 0 0

0 i 0 0 0 0 0 0

1 0 0 0 0 0 0 0

	 ,

ê1 =�
0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 − i 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 − i

0 0 0 0 0 0 i 0

	 , ê2 =�
0 0 1 0 0 0 0 0

0 0 0 i 0 0 0 0

1 0 0 0 0 0 0 0

0 − i 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 i

0 0 0 0 1 0 0 0

0 0 0 0 0 − i 0 0

	 ,

ê3 =�
0 0 0 1 0 0 0 0

0 0 − i 0 0 0 0 0

0 i 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 − i 0

0 0 0 0 0 i 0 0

0 0 0 0 1 0 0 0

	 ,
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â0 =�
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

	 .

APPENDIX C: THE SIMPLEST EIGENFUNCTIONS OF OCTONIC OPERATORS

All operators of octonic basis have two eigenvalues �= 	1, which are fourthly degenerate.
The simplest eigenfunctions are represented in the Table II.
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