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Suppression of noise in nonlinear systems subjected to strong periodic driving
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An overdamped Brownian motion in “quartic” potential subjected to periodic driving has been considered.
This system for the case of a weak periodic driving has been intensively studied during past decade within the
context of stochastic resonance. It has been demonstrated that for the case of predominantly suprathreshold
driving (the driving amplitude is significantly larger than the static threshibld noise in the output signal is
strongly suppressed at a certain frequency range: the signal-to-noise ratio demonstrates resonant behavior as a
function of frequency.

DOI: 10.1103/PhysRevE.65.022101 PACS nunier05.40—a

The switching dynamics of an overdamped Brownian parSome qualitative treatment of this problem has been done in
ticle in a “quartic” potential has been intensively studied in the pas{9,11], but the question is still open.
the past decade in the frame of stochastic reson&8Bg Few papers, where the case of strong periodic driving was
phenomenonl]. Stochastic resonance is a nonlinear noiseconsidered both in classichll2—14 and quantum systems
mediated cooperative phenomenon wherein the coherent rgt5], were addressed to investigate the area of hysteretic loop
sponse to a deterministic signal can be enhanced in the preand its resonant behavior as a function of the frequency of
ence of an optimal amount of noise. It had been observed idriving signal was demonstrated. But, to the best of our
a wide variety of electronic systems, such as, lag€ls  knowledge, the investigation of the signal-to-noise ratio as a
Schmitt triggerd 3], tunnel diodeg4], and superconducting function of frequency was not performed for the case of
quantum interference devicéSQUIDS [5,6]. It is known  strongly suprathreshold driving. This may be explained by
that for a single-level threshold system, SR has been olthe fact that most of the studies were restricted by adiabatic
served for the case of wedlinderthresholddriving [1] (al-  approximation, where frequency dependence of SNR could
though residual SR effects are known to occur for marginallynot be investigated in detail, or by linear response theory,
suprathreshold signalg]). In this case, as well as in the case where the driving amplitude was assumed to be small. Nev-
of suprathreshold SR in multilevel threshold syst¢Bisthe  ertheless, in the frame of linear response theory some weak
manifestation of SR is the resonant behavior of the signalresonant frequency dependence of the signal-to-noise ratio
to-noise ratio(SNR) or other relevant characteristics as awas recently observed for a particular case of piecewise rect-
function of noise intensity. angular potentia16].

However, most of practical devices are operating in the Recently we have shown, using description via temporal
predominantly suprathreshold regime, when the transitioharacteristics, that in a dynamical system with noise sub-
from one state to another one over a potential barrier occurgcted to a strong periodic driving, significant suppression of
deterministically and noise is the only disturbing factor lead-noise is possible in a certain frequency raftjél. The mani-
ing to erroneous switching. As an example of such a situatiofiestation of such suppression is the very weak dependence of
we can refer to the microwave hysteretic SQUID,10], the mean transition time on the noise intensity in a certain
whose dynamics is described by the model of Brownian mofrequency range.
tion in a bistable potential subjected to strong periodic driv- In the present paper we consider fluctuational dynamics of
ing at the given frequency. Such a SQUID represents a clear Brownian particle in a “quartic” potential subjected to
example of the device, by its very basic idea operating irstrong periodic driving and study the signal-to-noise ratio at
strongly suprathreshold reginfés important characteristic the given driving amplitude as a function of frequency and
is a function of the amplitude of the output signal versus thenoise intensity. If in the low frequency case we start from the
amplitude of the input drivingand for which the presence of predominantly suprathreshold driving, with approaching the
noise leads to earlier transitions over the potential barrier thatutoff frequency the dynamic threshold amplitude being a
results in an error of the measured dc magnetic flux. Fofunction of frequency will reach the driving amplitude and
microwave hysteretic SQUID a long-standing problem isabove the cutoff frequency the particle will not be able to
known: that of determining the parameters at which it shouldescape from one state to another in the absence of noise. In
operate in order to demonstrate maximal sensitivity. On onghis case we observe resonant behavior of SNR as a function
hand it is known that with the increase of pumping frequencyof frequency and the maximum is located near the cutoff
the sensitivity of the SQUID should improve, on the otherfrequency that approximately corresponds also to the time-
hand it is known that at frequencies higher than the cutofinatching conditionithe mean transition time from one state
frequency, the performance of the device should degradeo another will be minimal In the case where the driving

frequency is higher than the cutoff frequency we observe
resonant behavior of SNR as a function of noise intensity.
*Email address: alp@ipm.sci-nnov.ru While the latter effect has already been studiefi7ij to the
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best of our knowledge the resonant behavior of SNR as eS(w)
function of frequency is, for the first time, observed for the ¢.40
case of strong driving and the effect may be used for sup-
pression of noise in real electronic devices.

Consider a process of Brownian diffusion in a potential ¢.30
profile

U(x,t)=bx*—ax?+xAsin(Qt+ ¢), ) 0.20

where ¢ is initial phase. It is known that the probability
densityW(x,t) of the Brownian particle in the overdamped

limit (Markov procespgsatisfies the Fokker-Planck equation 0.10
IW(X,t) IG(x,t) 1 ¢ [du(x,t)
G- Tax Blax| dx WY 0-00
0.0 0.5 1.0 1.5 2.0 2.5 3.0
FPW(X,t) ) w
* x> ' ) FIG. 1. Spectral densitys(w) with enhanced noise parkT

=0.1, A=2; dots are connected by solid lines as a guide to the eye
Here G(x,t) is the probability currentB=h/kT, h is the  (dimensionless uniis
viscosity (in computer simulations we put=1), T is the

temperature,k is the Boltzmann constant, and(x,t)  —q 1 (the delta spikes at the first and some higher harmonics
=U(x,t)/KT is the dimensionless potential profile. The ini- 56 gytside of the figure in order to enhance the noise.part
tial and the boundary conditions have the following form:  5na can see that the form 8{w) significantly depends on
oy _ driving frequency(}, while the amplitude of the output sig-
Wx.0)=dx=x),  G(=*,)=0. @ nal is a monotonically decreasing function@f In order to

In computer simulations we chose the following param_study the resongnt beha.vi.or of spectral density, Igt us plot the
eters of the potentiab=1, a=2. With such a choice the SNR as a function of driving frequendy. From Fig. 2 one
coordinates of minima equad,;,=+1, the barrier height ©an see that SNR as a function 0f has a strongly pro-
AU=1, the critical (threshold amplitude A, at Q—0 is nounced maximum. The location of this maximum @t
around 1.5, and we have chosér 2 to be far enough from = {max iS close to the cutoff frequency and approximately
A.. We note that this is not the case “just above the thresh€0rreésponds to the time scale matching conditiéhy
old level,” considered i 7], but indeed strong driving: the = 7/ Tmin, Wherery, is the minimal transition time from one
amplitudeA=2 is far above the dynamic threshold in rather State to anothefsee the definition of transition time as well
broad frequency range. We also performed the analysis @S its investigation as a function of noise intensity and driv-
A=3,45: the results are qualitatively the same, o8§R "9 frequency in Ref{17]). The existence of optimal driving

rises accordingly and the location of maximum ®KRis  frequency may be explained in the following way. Let us
shifted to higher frequencies. consider the case of adiabatically slow driving. If noise is

The quantity of our interest is th8NR In accordance

with [1] we denote SNR as SNR(Q) kT=0.05  snR(kT)
800— 150
1 Q+Aw 3
SNR=—+—Ilim f S(w)dw, 4 = 100
S, o s X @ E
600— 50
Where g 0 LI DR DR LU I |
= 0.00 0.01 0.10 1.00 10.00
+oo 400 ST~ k=00 &
S(w)=f e '"“K[7]dr (5) 3 =
is the spectral densitgy({2) is noisy pedestal at the driving 200_;
frequency(}, andK] 7] is the correlation function 3
K[ 7]={(xX(t+ Px(1))), (6) 07
0.0 0.2 0.4 0.6 0.8 1.0
where the inner brackets denote the ensemble average aru Q
outer brackets indicate the average over initial phase FIG. 2. Signal-to-noise ratio as a function of driving frequency

In order to _obtain th_e correlation fun_CtiCK[ 7] we solved  for A=2 (dimensionless unilsby crosses and dashed line, SNR
Eq. (2) numerically, using the Crank-Nicholson scheme.  for A=3 andkT=0.1 is presented, the curve is reduced by the
In Fig. 1 the spectral densit$(w) is presented fokKT  factor of 5. Inset: SNR as function &fT for Q=1, A=2.
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absent, the escape would occur only after the correspondindynamic threshold adding some amount of noise will help
potential barrier would disappear. If we add some smalthe particle to move to another state and the conventional
amount of noise, the escape would occur earlier than in thetochastic resonand&] may be observedsee the inset of
deterministic case at some nonzero barrier heiglg con-  Fig. 2 for (=1). We note that even in the ca@= (), the
sider escape in a probabilistic sense, say as decay of proBNR infinitely rises fok T—0, since, fork T=0, there will
ability e times. If the driving frequency is increased, the be small but nonzero oscillations near the initial potential
potential barrier height will decrease faster and the escapainimum.
will occur at a lower barrier, that is, closer to the determin-  In conclusion we have shown that in the dynamical sys-
istic case(see the investigation of probability evolution in tem with the noise driven by a strong sinusoidal sigipaé-
time-periodic potential in17]). In the case where the driving dominantly suprathreshold drivihgthe influence of noise is
frequency is higher than the cutoff frequency of the systemsignificantly reduced in a certain frequency range: the signal-
0=0. (whereQ); has a dynamical sense: for a given am-to-noise ratio is a resonant function of the frequency of the
plitude of the signal the performance of the system signifi-driving signal. This effect is of real importance for applica-
cantly degrades above a certain frequendfpe particle tions since it may allow one to operate a concrete device
would never escape over the potential barrier in the absendéke a SQUID or other electronic devicem the regime of
of noise and will remain in the vicinity of the initial potential minimal noise-induced error.
minimum, since there is not enough time to reach the basin
of attraction of another state. Therefore, there is some fre- The author wishes to thank Professor M. Salerno for help-
guency range, where at the given small noise intensity théul discussions. This work has been supported by the
escape will occur over the smallest potential barrier and ilMURST (Ministero dell’Universita’ e della Ricerca Scienti-
this case noise has a minimal effect on the system that resulfiea e Tecnologica the INFM (Istituto Nazionale di Fisica
in the maximal SNR. della Materia, and the Russian Foundation for Basic Re-
In the case where the driving frequency is higher than thesearch(Project No. 00-02-16528, Project No. 99-02-17544
cutoff frequencyQ) =) (the driving amplitude is below the and Project No. 00-15-96620
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